PRODUCT GUIDE

COMPOSITE FIBRE TECHNOLOGIES

VERSION 05, 2021

TABLE OF CONTENTS

PART ONE	INTRODUCTION	5
PART TWO	STRUCTURAL SECTIONS	12
PART THREE	DECKING	29
PART FOUR	PILES	35
PART FIVE	GFRP REINFORCING BARS	37
PART SIX	HANDRAILS	39
PART SEVEN	ACCESSORIES	43
GLOSSARY		50

DISCLAIMER

The information provided in this publication, including any technical specification, is specific to pultruded fibre reinforced polymer (composite fibre) products supplied by Wagners CFT Manufacturing PtyLtd ("Wagners"), is provided primarily for marketing purposes, and is subject to change without notice.

To the extent permitted by law, Wagners excludes any and all liability in any way, no matter how arising, to any person which may arise out of, in connection with, or as a consequence of, the accuracy or correctness of the information provided or a person relying on some or all of the information provided in this publication.

PRODUCT AVAILABILITY AND OTHER INFORMATION

It is expected that the content of this Product Guide will change over time as a result of improvements to the materials, properties and finishes of products, and due to changes to the product range.

Therefore it is important to check that you are using the most up to date information by referring to the Wagners website.

VISIT WAGNERS CFT WEBSITE BY SCANNING THE QR CODE

PINKENBA WHARF, BRISBANE, QLD, AU World's first marine infrastructure that is made with geopolymer concrete Largest use of GFRP bars (305 km) and pultruded frp sections (330 tonnes) in a single job in Australia

Jin

IN ENGLA

ant I

99-99-99

PERSONAL PROPERTY.

WAGNERS

TORAT

14

PREFACE

This Product Guide is intended for all potential users of Wagners products, including project owners and managers, architects, engineers, project certifiers, and builders. It provides users of this publication with the general characteristics of Fibre Reinforced Polymers (FRP), and provides technical specifications for all of the Wagners pultruded products.

The vision of Wagners is not just to be a supplier of FRP structural products, but also to provide the market with innovative engineered structural solutions for many civil and structural applications where fibre composites have a distinct advantage. To support this vision, this Product Guide is part of a suite of publications that includes member design, connection design, and many pre-engineered application and building system designs. The goal of this publication is to enable designers, certifiers and builders to specify and use Wagners products with ease and confidence in the quality and integrity of the data presented and the products supplied.

The product specifications and properties presented in this Product Guide are the result of the materials, manufacturing processes and fibre layups chosen by Wagners, and are therefore specific to these particular products. Other manufacturers will not necessarily use the same materials, manufacturing process and fibre layups, resulting in different mechanical properties. Therefore similar structural shapes produced by other manufacturers will not have identical properties and performance to Wagners' products.

WAGNER.COM.AU

PART ONE INTRODUCTION

PRODUCTS AND SERVICES

Wagners is a diversified Australian construction materials and services provider and an innovative producer of New Generation Building Materials that reduce the impact of heavy construction materials on the environment.

Wagners are a producer of cement, concrete, aggregates, composite products and have developed innovative technology with its Earth Friendly Concrete product. Wagners are also providers of transport services, precast concrete and reinforcing steel.

A LONG AND STRONG HISTORY

Established in 1989 in Toowoomba, Queensland, Wagners is an ASX-listed company operating in domestic and international markets. Wagners started with three trading divisions - Wagners Concrete, Quarries and Transport and rapidly expanded to include cement, fly ash and lime, reinforcing steel, on-site concrete supply, contract crushing and bulk transport.

After many years of research and development, Wagners composite fibre products and an innovative concrete product that contains no cement, Earth Friendly Concrete, are now integral in reducing the worlds carbon emissions and impact on the environment caused by traditional building materials.

KEY AWARDS AND MILESTONES

2009: Winner Premier of Queensland's Regional Smart Business Award for having made the largest regional impact in the states 150 year history.

2016: Winner, Flatwork Category, American Concrete Institute (ACI) Excellence in Concrete Awards for the innovative use of Earth Friendly Concrete (EFC) geopolymer in pavements (Project: Toowoomba Wellcamp Airport).

2017: Listed on the Australian Stock Exchange (ASX).

2018: Inducted into the Queensland Business Leaders Hall of Fame in recognition of their intrepid entrepreneurship in successfully completing highly challenging infrastructure projects nationally and internationally.

EARTH FRIENDLY CONCRET

We are committed to achieving and maintaining the highest possible standard of workplace health and safety across the entire business.

WAGNERS IS ISO 9001. ISO 14001 AND ISO 45001 CERTIFIED, ACCREDITED BY SAI GLOBAL.

WAGNERS COMPOSITE FIBRE TECHNOLOGIES

COMPOSITE MATERIALS HAVE PROVEN TO BE A MATERIAL OF CHOICE INCREASINGLY USED BY CIVIL ENGINEERS IN RECENT YEARS.

As the use of composite materials becomes more common, their performance advantages have been well received by the aerospace and marine industries. Additional performance advantages such as high strength, low weight and a long service life are achieved as Wagners composite products do not corrode, rot or shrink. In certain applications, composite materials are superior to traditional construction materials such as steel and wood, ensuring a practical investment for the future of the asset.

Wagners has pioneered the use of composite materials both in Australia and internationally, exporting products from Toowoomba, Queensland to locations such as the United States, United Kingdom, New Zealand, Russia, Middle East, Malaysia, Brazil and Canada. We are credited with the manufacture, design, and installation of the world's first composite road bridge on a public road network. Our continued research and development ensures we remain a leader in the design and implementation of this exciting building material.

In the past, our composites have been used in transportation, marine and electrical applications, amongst many others. However, it is not until recently that the ability to build large structures has been fully utilised by our experienced staff. Many years of research and development have resulted in the successful application of composite fibre technology to a number of products including wharves, road bridges, electrical crossarms and pedestrian structures.

PULTRUSION

Wagners use the 'pultrusion process' to fabricate the structural fibreglass sections. These sections are traditional in geometry and shape to that of rolled hollow section steel but are manufactured from fibreglass reinforcements and vinyl ester resins. The material combination has been chosen by Wagners to optimise the structural system as well as maximise cost efficiency.

PRODUCT GUIDE VERSION 05

COMPOSITE FIBRE TECHNOLOGIES (CFT)

Electrical-Corrosion Resistant (ECR) type glass has been selected as the initial building block for all Wagners FRP products. This high grade material has been selected for its impressive strength performance and workability. ECR type glass is also widely reported as having excellent chemical resistant characteristics.

To bind the glass fibres together, Wagners typically uses Vinyl Ester (VE) resin. VE resin has been selected over unsaturated polyester and epoxy resins because it provides strength and chemical resistant properties similar to epoxy resin to a significant cost advantage.

BOARDWALKS

PEDESTRIAN BRIDGES

ROAD BRIDGES

TIMBER REHABILITATION

REINFORCING FRP REBAR

MARINE STRUCTURES

STAIRS

DECKING

WATER STRUCTURES

ELECTRICAL CROSSARMS

LIGHT POLES

UTILITY POLES

ENVIRONMENTAL PERFORMANCE

Wagners are committed to reducing waste and the consumption of resources and avoiding the pollution of land, air and water. This is achieved through recovering and recycling our waste products where possible, and by strict adherence to licensing conditions, industry codes and regulations.

Wagners' pultruded FRP products are currently used as substitutes for hardwood in marine and other corrosive environments offering a long-life asset with no detrimental impact on these environments. With hardwood forests in decline around the world, the use of FRP products in these applications will help preserve this important natural resource. The same benefits apply to the use of Wagners pultruded FRP products in place of steel, aluminum and reinforced concrete.

Key findings of a cradle-to-grave life cycle analysis by the Life Cycle Engineering and Management Research Group at The University of New South Wales by Kara and Manmek (2009) were:

"In general, the life cycle of the fibre reinforced polymer products have significantly lower embodied energy than the traditional products. As a conclusion, based on the defined scopes and assumptions of this analysis, it was found that composite products are estimated to perform better than the traditional products in terms of their embodied energy that incurred during their life cycle stages. At the material stage, they perform the best. Their outstanding material properties such as strength and lightness are genuinely an advantage over the traditional materials in this modern era."

More specifically, the report made the following conclusion regarding a power pole crossarm produced by Wagners:

"A power-pole cross-arm that is made from the fibre composite has an environmental impact which is 77% less than that of a hardwood timber power-pole cross-arm. This equates to a lessening on the effects towards human health, the ecosystem quality and resource use during its life cycle."

The full report can be downloaded from the Wagners website at: *www.wagner.com.au*

COMPOSITE FIBRE TECHNOLOGIES (CFT)

PRODUCT GUIDE VERSION 05

Today the end of life strategy for composites is disposal. Whilst this is not the preferred end of life strategy, it does no harm to the environment as the product once cured, is inert. It must not be disposed of in fire as toxic fumes may be released. The recycling options is also available to reuse the FRP products/constituent materials in various applications. Research is currently under way to make the process highly efficient.

Our environmental performance advantages includes:

» Low embodied energy

- » Good thermal insulator conserving energy while reducing operating costs
- » Durable long life cycle reducing maintenance and replacement costs
- » Main ingredient is glass which is made from sand an abundant resource

FRP STRUCTURES LIFE CYCLE

FIBRE REINFORCED PRODUCT MANUFACTURING PROCESS (PULTRUSION PROCESS)

The term pultrusion combines the words "pull" and "extrusion". Extrusion is the pushing of material, such as a billet of aluminum, through a shaped die, whereas pultrusion, is the pulling of material, such as fibre and resin, through a shaped die.

The pultrusion process starts with racks holding rolls of fibre glass roving. The fibre reinforcement used by Wagners is glass fibre. This raw fibre is pulled off the racks and is guided to the necessary shape, orientation and layers before entering a resin injection system. A surface veil is incorporated to improve surface finish and provide resistance to Ultra Violet (UV) degradation.

The fibre reinforcement becomes fully injected (wetted-out) with the catalysed resin such that all the fibre filaments are thoroughly saturated with the resin mixture. This wetted fibre then enters the heated curing die. The heat initiates a chemical reaction in the resin which causes it to harden and the finished profile exits the die and is subsequently cooled.

COOKTOWN FISHING PLATFORM Cooktown, North QLD, Au

the state

1

. . .

0000

4 4 4 4

10 10

STRUCTURAL SECTIONS

STANDARD STRUCTURAL SECTIONS BONDED STRUCTURAL SECTIONS

STANDARD STRUCTURAL SECTIONS CIRCULAR HOLLOW SECTIONS

DIMENSIONS AND SECTION PROPERTIES

CIRCULAR HOLLOW SECTIONS

Fibre Reinforced Polymer (FRP)

PRODUCT CODE		DIMENS	SIONS				SECTION PI	ROPERTIES		
	Designation Outer Diameter Thick.		Mass per meter	External Surface Area	Cross Section Area		About any axis		Torsion Constant	Torsion Modulus
	d。	t		per m	Ag	I	Z	r	J	С
	mm	mm	kg/m	m²/m	mm ²	10 ⁶ mm ⁴	10 ³ mm ³	mm	10 ⁶ mm ⁴	10 ³ mm ³
WGN-C1000	88.9	6.0	3.17	0.279	1563	1.35	30.4	29.4	2.7	60.7
WGN-C2000	154.0	5.8	5.50	0.484	2700	7.43	96.4	52.4	14.9	192.9
WGN-C3000	230.1	9.7	13.86	0.723	6716	40.86	355.2	78.0	81.7	710.3
WGN-C4000	293.0	9.5	17.43	0.920	8461	85.10	580.9	100.3	170.2	1161.8
WGN-C5000	301.0	13.5	25.13	0.946	12193	126.26	838.9	101.8	252.5	1677.9

SUPPLY CONDITIONS

Finish

The standard finish for the Circular Hollow Section (CHS) product is painted.

Length

The CHS profiles are typically manufactured up to 11.8m in length based on typical transport limitations. Longer lengths are available upon request

Post-Processing

Wagners can provide members cut to length with predrilled holes and inserts in accordance with client drawings. Contact Wagners for further details and pricing.

MSDS - FRP Structural Section

MECHANICAL PROPERTIES

DDODEDTV					CTANDADD			
PROPERTY	C1000	C1010	C2000	C3000	C4000	C5000	UOM	STANDARD
Tensile Strength – Longitudinal	361	307	610	635	635	635	MPa	160 527 4
Tensile Modulus of Elasticity – Longitudinal	35720	22920	36300	35405	35405	35405	MPa	150 527-4
Compressive Strength – Longitudinal	267	295	395	395	395	395	MPa	
Compressive Modulus of Elasticity – Longitudinal	39200	29220	33300	41178	41178	41178	MPa	ASTM D6641
In-Plane Shear Strength – Longitudinal	91	92	84	93	93	93	MPa	ASTM D7078

*The values in the table are the characteristic values to be used for design in normal ambient conditions. It does not include adjustment factors to account for temperature, humidity, and chemical environments.

PHYSICAL PROPERTIES

PROPERTY	NOTATION	VALUE	UNIT	TEST METHOD
Density	r	2,030	kg/m³	ASTM D792
Barcol Hardness		60	-	ASTM D2583
Water Absorption		0.2	%	ISO 62
Glass Transition Temperature	Tg	130	°C	ASTM D7028
Fibre Mass Fraction	Wr	77.4	%	160 1172
Fibre Volume Fraction	Vr	57.7	%	150 1172
Coefficient of Thermal Expansion – Longitudinal	α_{L}	5.03x10-6	/ °C	ISO 11359-2

The values in the table are mean values obtained from tests at ambient temperature and relative humidity.

TABLE C

	CIRCULAR HOLLOW SECTIONS (CHS)											
First di	First digit: Dimension Second digit: Wall Thickness				Third digit: Reinforcement	Fourth digit: Resin						
Value	Dimension, mm	Value	Wall thickness, mm	Value	Reinforcement Type	Value	Resin Type					
1	88.9	0	6.0	0 ECR-glass rovings with 56° wound fibres		0	Vinyl Ester					
				1	ECR-glass rovings with 71° wound fibres							
2	154.0	0	5.8	0	ECR-glass rovings with 30° wound fibres	0	Vinyl Ester					
3	230.1	0	9.7	0	ECR-glass rovings with 50° wound fibres	0	Vinyl Ester					
4	293.0	0	9.5	0	ECR-glass rovings with 30° wound fibres	0	Vinyl Ester					
5	301.0	0	13.5	0	ECR-glass rovings with 30° wound fibres	0	Vinyl Ester					

LIGHT POLES Wellcamp Business Park, QLD, Au

SQUARE HOLLOW SECTIONS

DIMENSIONS AND SECTION PROPERTIES

SQUARE HOLLOW SECTIONS

Fibre Reinforced Polymer (FRP)

PRODUCT CODE			D	IMENSIO	NS			SECTION PROPERTIES							
	Depth	Width	Thick.	Outside Corner Radius	Inside Corner Radius	Mass	External Surface Area	Cross Section Area	About x- and y-axis		About	n-axis	Torsion Constant	Torsion Modulus	
	d	b	t	r _o	r _i	per m	per m	Ag	l _x	Z _x	r _x	l _n	Z _n	J	С
	mm	mm	mm	mm	mm	kg/m	m²/m	mm ²	10 ⁶ mm ⁴	10 ³ mm ³	mm	10 ⁶ mm ⁴	10 ³ mm ³	10 ⁶ mm ⁴	10 ³ mm ³
WGN-S1000	100	100	5.2	10.0	4.75	3.85	0.383	1905	2.80	56.1	38.4	2.81	42.3	4.6	84.3
WGN-S2000	104	104	7.0	10.0	4.75	5.30	0.399	2650	4.11	79.0	39.4	4.12	59.3	6.6	115.7
WGN-S3000	125	125	6.4	10.0	4.75	6.07	0.483	2970	6.89	110.2	48.2	6.90	81.9	10.9	162.9

SUPPLY CONDITIONS

Finish

The standard finish for the Square Hollow Section (SHS) product is painted.

Length

The SHS profiles are typically manufactured up to 11.8m in length based on typical transport limitations. Longer lengths are available upon request.

Post-Processing

Wagners can provide members cut to length with predrilled holes and inserts in accordance with client drawings. Contact Wagners for further details and pricing.

MSDS - FRP Structural Section

MECHANICAL PROPERTIES

DRADEDTY		RESULT		CTANDADD	
PROPERTY	WGN-S1000	WGN-S2000	WGN-S3000	UOM	STANDARD
Tensile Strength – Longitudinal	610	595	610	MPa	
Tensile Modulus of Elasticity – Longitudinal	36300	37680	36300	MPa	ISO 527-4
Poisson's Ratio – Longitudinal	0.28	0.28	0.28	-	
Tensile Strength – Transverse	55	55	55	MPa	
Tensile Modulus of Elasticity – Transverse	10800	10800	10800	MPa	ISO 527-4
Poisson's Ratio – Transverse	0.09	0.09	0.09	-	
Compressive Strength – Longitudinal	485	405	485	MPa	
Compressive Modulus of Elasticity – Longitudinal	33300	38240	33300	MPa	ASTM D6641
Compressive Strength – Transverse	120	120	120	MPa	
Compressive Modulus of Elasticity – Transverse	11600	11600	11600	MPa	ASTM D6641
In-Plane Shear Strength – Longitudinal	84	71	84	MPa	
In-Plane Shear Modulus of Elasticity – Longitudinal	4280	6040	4280	MPa	ASTM D7078
Interlaminar Shear Strength	44	43	44	MPa	ASTM D2344
Izod Pendulum Impact Resistance - Longitudinal**	3204	3204	3204	J/m	
Izod Pendulum Impact Resistance - Transverse	554	554	554	J/m	ASTM D256

*The values in the table are the characteristic values to be used for design in normal ambient conditions. It does not include adjustment factors to account for temperature, humidity, and chemical environments.

**The test samples exceeded the test equipment capacity with 21.7J hammer, hence the true value is expected to be higher than the reported value.

PHYSICAL PROPERTIES

WAGNERS

PROPERTY	NOTATION	VALUE	UNIT	TEST METHOD
Density	r	2,030	kg/m³	ASTM D792
Barcol Hardness		60	-	ASTM D2583
Water Absorption		0.2	%	ISO 62
Glass Transition Temperature	Tg	130	°C	ASTM D7028
Fibre Mass Fraction	Wr	77.4	%	160 1170
Fibre Volume Fraction	Vr	57.7	%	150 1172
Coefficient of Thermal Expansion – Longitudinal	αL	5.03x10-6	/℃	ISO 11359-2

The values in the table are mean values obtained from tests at ambient temperature and relative humidity.

COMPOSITE FIBRE TECHNOLOGIES (CFT)

PRODUCT GUIDE VERSION 05

TABLE S

	SQUARE HOLLOW SECTIONS (SHS)												
First digit: Dimension Second digit: Wall Thickness					Third digit: Reinforcement	Fourth	digit: Resin						
Value	Dimension, mm	Value	Wall thickness, mm	Value	Reinforcement Type	Value	Resin Type						
1	100x100	0	5.2	0	ECR-glass rovings with 50° wound fibres	0	Vinyl Ester						
2	104x104	0	7.0	0	ECR-glass rovings with 50° wound fibres	0	Vinyl Ester						
3	125x125	0	6.4	0	ECR-glass rovings with 50° wound fibres	0	Vinyl Ester						

RECTANGULAR HOLLOW SECTIONS

DIMENSIONS AND SECTION PROPERTIES

RECTANGULAR HOLLOW SECTIONS

Fibre Reinforced Polymer (FRP)

PRODUCT CODE	DIMENSIONS										SECTIO	ON PROP	ERTIES			
	Depth	Width	Thick.	Outside Corner Radius	Inside Corner Radius	Mass	External Surface Area	Cross Section Area	s on About x-axis		A	bout y-axi	5	Torsion Constant	Torsion Modulus	
	d	b	t	r _o	r _i	per m	per m	Ag	I _x	Z _x	r _x	l _y	Zy	r _y	J	С
	mm	mm	mm	mm	mm	kg/m	m²/m	mm ²	10 ⁶ mm ⁴	10 ³ mm ³	mm	10 ⁶ mm ⁴	10 ³ mm ³	mm	10 ⁶ mm ⁴	10 ³ mm ³
WGN-R1000	100	75	5.2	10.0	4.75	3.31	0.333	1645	2.22	44.4	36.7	1.41	37.7	29.3	2.9	61.0
WGN-R5000	250	100	8.1	5.0	8.0	11.72	0.691	5441	41.36	330.9	87.2	9.40	188.1	41.6	24.2	322.7

SUPPLY CONDITIONS

Finish

The standard finish for the Rectangular Hollow Section (RHS) product is painted.

Length

The RHS profiles are typically manufactured up to 11.8m in length based on typical transport limitations. Longer lengths are available upon request.

Post-Processing

Wagners can provide members cut to length with predrilled holes and inserts in accordance with client drawings. Contact Wagners for further details and pricing.

MSDS - FRP Structural Section

MECHANICAL PROPERTIES

DDODEDTV	RES	ULT		CTANDADD
PROPERTY	WGN-R1000	WGN-R5000	UOM	STANDARD
Tensile Strength – Longitudinal	570	610	MPa	
Tensile Modulus of Elasticity – Longitudinal	37600	36300	MPa	ISO 527-4
Poisson's Ratio – Longitudinal	0.3	0.28	-	
Tensile Strength – Transverse	35	55	MPa	
Tensile Modulus of Elasticity – Transverse	9190	10800	MPa	ISO 527-4
Poisson's Ratio – Transverse	0.07	0.09	-	
Compressive Strength – Longitudinal	425	485	MPa	
Compressive Modulus of Elasticity – Longitudinal	34000	33300	MPa	ASTM D6641
Compressive Strength – Transverse	108	120	MPa	
Compressive Modulus of Elasticity – Transverse	11000	11600	MPa	ASIM D6641
In-Plane Shear Strength – Longitudinal	51	84	MPa	
In-Plane Shear Modulus of Elasticity – Longitudinal	4690	4280	MPa	ASIM D7078
Interlaminar Shear Strength	42	44	MPa	ASTM D2344
Izod Pendulum Impact Resistance - Longitudinal**	3204	3204	J/m	
Izod Pendulum Impact Resistance - Transverse	554	554	J/m	ASTM D256

*The values in the table are the characteristic values to be used for design in normal ambient conditions. It does not include adjustment factors to account for temperature, humidity, and chemical environments.

**The test samples exceeded the test equipment capacity with 21.7J hammer, hence the true value is expected to be higher than the reported value.

PHYSICAL PROPERTIES

PROPERTY	NOTATION	VALUE	UNIT	TEST METHOD
Density	r	2,030	kg/m³	ASTM D792
Barcol Hardness		60	-	ASTM D2583
Water Absorption		0.2	%	ISO 62
Glass Transition Temperature	Tg	130	°C	ASTM D7028
Fibre Mass Fraction	<i>W</i> _r	77.4	%	150 1172
Fibre Volume Fraction	Vr	57.7	%	150 1172
Coefficient of Thermal Expansion – Longitudinal	α	5.03x10 ⁻⁶	/°C	ISO 11359-2

The values in the table are mean values obtained from tests at ambient temperature and relative humidity.

TABLE R

	RECTANGULAR HOLLOW SECTIONS (RHS)												
First digit: Dimension Second digit: Wall Thickness Third digit: Reinforcement Fou													
Value	Dimension, mm	Value	Wall thickness, mm	Value	Reinforcement Type	Value	Resin Type						
1	100x75	0	5.0	0	ECR-glass rovings with 50° wound fibres	0	Vinyl Ester						
5	250x100	0	8.1	0	ECR-glass rovings with 39° wound fibres	0	Vinyl Ester						

FLAT SECTIONS

DIMENSIONS AND SECTION PROPERTIES

Fibre	Reinforced	Polymer	(FRP)	

PRODUCT CODE		DIM	ENSIONS			SECTION PROPERTIES							
	Designation Width Thick.		Corner Radius	Corner Radius Mass		Cross Section Area	,	About x- axis	5		About y-axi	S	Torsion Constant
	b t		r _o per m		per m	Ag	l _x	Z _x	r _x	l I _y	Zy	r _y	J
	b t mm mm		mm	kg/m	m²/m	mm ²	10 ⁶ mm ⁴	10 ³ mm ³	mm	10 ⁶ mm ⁴	10 ³ mm ³	mm	10 ⁶ mm ⁴
WGN-F1000	1200	6.4	-	15.6	2.413	7680	0.026	8.2	1.85	921.6	1536	346.41	0.10
WGN-F3000	300 24.0		10	14.6	0.641	7176	0.343	28.6	6.91	53.5	356.5	86.32	1.38

SUPPLY CONDITIONS

Finish

The standard finish for the Flat Section (FS) product is painted.

Length

The FS profiles are typically manufactured up to 11.8m in length based on typical transport limitations. Longer lengths are available upon request.

Post-Processing

Wagners can provide members cut to length with customised specifications in accordance with client drawings. Contact Wagners for further details and pricing.

MSDS - FRP Structural Section

MECHANICAL PROPERTIES

DDODEDTV	RES	ULT		STANDARD	
PROPERTI	F1000	F3000	UNIT	JIANDARD	
Tensile Strength – Longitudinal	373	548	MPa	150 527 4	
Tensile Modulus of Elasticity – Longitudinal	26100	41768	MPa	150 527-4	
Compressive Strength – Longitudinal	265	500	MPa		
Compressive Modulus of Elasticity – Longitudinal	25400	36575	MPa	ASTM D6641	

The values in the table are the characteristic values to be used for design in normal ambient conditions. It does not include adjustment factors to account for temperature, humidity, and chemical environments.

PHYSICAL PROPERTIES

PROPERTY	NOTATION	VALUE	UNIT	STANDARD
Density	r	1979	kg/m3	ASTM D792
Barcol Hardness		60	-	ASTM D2583
Fibre Mass Fraction	W _r	75	%	
Fibre Volume Fraction	V,	54	%	ISO 1172

The values in the table are the characteristic values to be used for design in normal ambient conditions. It does not include adjustment factors to account for temperature, humidity, and chemical environments.

TABLE F

	FLAT SECTIONS (FS)												
First	First digit: Dimension Second digit: Wall Thickness Third digit: Reinforcement												
Value	Dimension, mm	Value	Wall thickness, mm	Value	Reinforcement Type	Value	Resin Type						
1	1200x6.4	0	6.4	0	ECR-glass rovings and E-CR multi-axial stitched fabric.	0	Vinyl Ester						
3	300x24.0	0	24.0	0	ECR-glass rovings and E-CR multi-axial stitched fabric.	0	Vinyl Ester						

BONDED STRUCTURAL SECTIONS

BONDED RECTANGULAR SECTIONS

DIMENSIONS AND SECTION PROPERTIES

BONDED RECTANGULAR SECTIONS

Fibre Reinforced Polymer (FRP)

PRODUCT CODE			D	IMENSION	IS			SECTION PROPERTIES							
	Depth	Designation Width	Thick.	Outside Corner Radius	Inside Corner Radius	Mass	External Surface Area	Cross Section Area		About x-axis			About y-axis		Torsion Constant
	d	b	t	r _o	r _i	per m	per m	Ag	I _x	Z _x	r _x	l _y	Zy	r _y	J
	mm	mm	mm	mm	mm	kg/m	m²/m	mm ²	10 ⁶ mm ⁴	10 ³ mm ³	mm	10 ⁶ mm ⁴	10 ³ mm ³	mm	10 ⁶ mm ⁴
WGN-B1020	200	100	5.2	10.0	4.75	7.70	0.61	3811	15.1	151.3	63.0	5.6	112.1	38.4	9.1
WGN-B1030	300	100	5.2	10.0	4.75	11.55	0.83	5716	46.5	310.1	90.2	8.4	168.2	38.4	13.7
WGN-B1040	400	100	5.2	10.0	4.75	15.40	1.05	7621	106.5	532.4	118.2	11.2	224.3	38.4	18.2
WGN-B1050	500	100	5.2	10.0	4.75	19.25	1.27	9527	204.6	818.2	146.5	14.0	280.3	38.4	22.8
WGN-B1060	300	200	5.2	10.0	4.75	23.10	0.96	11432	93.0	620.2	90.2	45.4	454.0	63.0	27.3
WGN-B1120	250	125	6.4	10.0	4.75	12.14	0.76	5939	37.0	295.8	78.9	13.8	220.3	48.2	21.9
WGN-B1130	375	125	6.4	10.0	4.75	18.21	1.03	8909	113.5	605.1	112.8	20.7	330.5	48.2	32.8
WGN-B1140	500	125	6.4	10.0	4.75	24.28	1.30	11879	259.5	1038.2	147.8	27.5	440.6	48.2	43.7
WGN-B1150	625	125	6.4	10.0	4.75	30.35	1.57	14848	498.4	1595.0	183.2	34.4	550.8	48.2	54.7
WGN-B1160	375	250	64	10.0	475	36.42	121	17818	226.9	1210.2	112.8	110.9	887 3	78.9	65.6

SUPPLY CONDITIONS

Finish

The standard finish for the Bonded Rectangular Section (BRS) product is painted.

Length

The BRS profiles are typically manufactured up to 11.8m in length based on typical transport limitations. Longer lengths are available upon request

Post-Processing

Wagners can provide members cut to length with predrilled holes and inserts in accordance with client drawings. Contact Wagners for further details and pricing.

MSDS - FRP Structural Section

BONDED SQUARE SECTIONS

DIMENSIONS AND SECTION PROPERTIES

BONDED SQUARE SECTIONS

Fibre Reinforced Polymer (FRP)

PRODUCT CODE			D	IMENSION	IS		SECTION PROPERTIES							
	Depth	Designation Width	Thick.	Outside Corner Radius	Inside Corner Radius	Mass	External Surface Area	Cross Section Area	About	t x-axis and y	/-axis	About	n-axis	Torsion Constant
	d	d b t		r _o	r _i	per m	per m	Ag	l _{x,y}	Z _{x,y}	r _{x,y}	l _n	Z _n	J
	mm	mm	mm	mm	mm	kg/m	m²/m	mm ²	10 ⁶ mm ⁴	10 ³ mm ³	mm	10 ⁶ mm ⁴	10 ³ mm ³	10 ⁶ mm ⁴
WGN-B2020	200	200	5.2	10.0	4.75	15.40	0.766	7621	30.3	302.7	63.0	30.2	220.4	18.2
WGN-B2120	250	250 250 6.4			4.75	24.28	0.966	11879	73.9	591.5	78.9	73.2	425.7	43.7

SUPPLY CONDITIONS

Finish

The standard finish for the Bonded Square Section (BSS) product is painted.

Length

The BSS profiles are typically manufactured up to 11.8m in length based on typical transport limitations. Longer lengths are available upon request

Post-Processing

Wagners can provide members cut to length with predrilled holes and inserts in accordance with client drawings. Contact Wagners for further details and pricing.

MSDS - FRP Structural Section

DIMENSIONS AND SECTION PROPERTIES

BONDED I-SECTIONS

Fibre Reinforced Polymer (FRP)

PRODUCT CODE					DII	MENSIONS				SECTION PROPERTIES							
	Depth	C Wi	esignatic dth	on Th	iick.	Outside Inside Corner Radius Corner Radius Mass External Area			Cross Section Area	/	About x-axis		About y-axis			Torsion Constant	
	d	b _f	b _w	t _f	t _w	r _o	r _i	per m	per m	Ag	l I _x	Z _x	r _x	l I _y	Zy	r _y	J
	mm	mm	mm	mm	mm	mm	mm	kg/m	m²/m	mm ²	10 ⁶ mm ⁴	10 ³ mm ³	mm	10 ⁶ mm ⁴	10 ⁶ mm ⁴	10 ³ mm ³	10 ⁶ mm ⁴
WGN-B3020	248	300	100	24	5.2	10.0	4.75	36.38	1.47	18163	195.9	1579.4	103.8	112.6	750.4	78.7	10.5
WGN-B3030	348	300	100	24	5.2	10.0	4.75	40.68	1.66	20068	423.9	2436.0	145.3	115.4	769.0	75.8	15.0
WGN-B3040	448	300	100	24	5.2	10.0	4.75	44.53	1.85	21973	752.2	3358.0	185.0	118.2	787.7	73.3	19.6
WGN-B3050	548	300	100	24	5.2	10.0	4.75	48.38	2.04	23879	1190.4	4344.6	223.3	121.0	806.4	71.2	24.1
WGN-B3120	298	300	125	24	6.4	10.0	4.75	41.27	1.52	20291	307.0	2060.6	123.0	120.7	804.8	77.1	23.3
WGN-B3130	423	300	125	24	6.4	10.0	4.75	47.34	1.76	23261	685.4	3240.4	171.6	127.6	850.7	74.1	34.2
WGN-B3140	548	300	125	24	6.4	10.0	4.75	53.41	2.00	26231	1245.4	4545.3	217.9	134.5	896.6	71.6	45.1
WGN-B3150	673	300	125	24	6.4	10.0	4.75	59.48	2.24	29200	2010.4	5974.4	262.4	141.4	942.5	69.6	56.1

SUPPLY CONDITIONS

Finish

The standard finish for the Bonded I Section (BIS) product is painted.

PRODUCT GUIDE VERSION 05

COMPOSITE FIBRE TECHNOLOGIES (CFT)

Length

The BIS profiles are typically manufactured up to 11.8m in length based on typical transport limitations. Longer lengths are available upon request

Post-Processing

AGNERS

Wagners can provide members cut to length with predrilled holes and inserts in accordance with client drawings. Contact Wagners for further details and pricing.

MSDS - FRP Structural Section

DIMENSIONS AND SECTION PROPERTIES

BONDED U-SECTIONS

Fibre Reinforced Polymer (FRP)

PRODUCT CODE					C	DIMENSIONS				SECTION PROPERTIES									
	Depth	De Wie	esignatio dth	n Th	iick.	Outside Corner Radius	Inside Corner Radius	Mass	External Surface Area	Cross Section Area		About	x-axis			About	y-axis		Torsion Constant
	d	b _f	b _w	t _r	t _w	r _o	r _i	per m	per m	Ag	I _x	Z _{x, max}	Z _{x,min}	r _x	l _y	Z _{y, max}	Z _{y,min}	r	J
	mm	mm	mm	mm	mm	mm	mm	kg/m	m²/m	mm ²	10 ⁶ mm ⁴	10 ³ mm ³	10 ³ mm ³	mm	10 ⁶ mm ⁴	10 ³ mm ³	10 ³ mm ³	mm	10 ⁶ mm ⁴
WGN-B4120	274	600	125	24	6.4	10.0	4.75	53.4	2.25	26231	196.8	2781.6	968.6	86.6	1125.2	3756.9	3744.3	207.1	46.5
WGN-B4130	399	600	125	24	6.4	10.0	4.75	65.6	2.79	32170	544.1	4540.8	1949.0	130.1	1474.0	4920.0	4906.5	214.1	68.4
WGN-B4140	524	600	125	24	6.4	10.0	4.75	77.7	3.34	38109	1134.0	6552.0	3231.5	172.5	1822.8	6082.9	6068.8	218.7	90.3
WGN-B4150	649	600	125	24	6.4	10.0	4.75	89.8	3.88	44049	2016.4	8812.1	4798.9	214.0	2171.5	7245.8	7231.2	222.0	112.1

SUPPLY CONDITIONS

Finish

The standard finish for the Bonded U Section (BUS) product is painted.

Length

The BUS profiles are typically manufactured up to 11.8m in length based on typical transport limitations. Longer lengths are available upon request

Post-Processing

Wagners can provide members cut to length with predrilled holes and inserts in accordance with client drawings. Contact Wagners for further details and pricing.

MSDS - FRP Structural Section

ADHESIVE PROPERTIES

The adhesive used for bonded beams is a proprietary thixotropic, solvent free, toughened epoxy resin. The adhesive has been specially formulated for composites and provides excellent peel strength of the bond.

PROPERTY	NOTATION	VALUE	UNIT	TEST METHOD
Tensile Strength	ft	34.1	MPa	ISO 527-2
Tensile Modulus	Et	2409	MPa	ISO 527-2
Lap Shear Strength	f _v	11.9	MPa	ASTM D3163
Heat Deflection Temperature	HDT	85	°C	ISO 75

1. The properties in the table are as per the ATL Engineering Data sheet dated 23/9/09.

2. The values in the table are based on a cure schedule of 24 hours @ ambient + 8 hours @ 80 °C.

3. The values in the table are the design values to be used in normal ambient conditions. It does not include adjustment factor to account for temperature, humidity, and chemical environments.

TABLE B

			BONDED SI	ECTIONS			
-	First digit	Se	cond digit	Thi	rd digit	Fou	ırth digit
Value	Section	Value	Components Profile	Value	Cells Configuration	Value	N/A
				2	2		
1	Bonded	0	WGN-S1000	3	3		
1	Section	1	WGN-S3000	4	4	0	N/A
				5	5		
				6	2x3		
2	Bonded Square Section	0 1	WGN-S1000 WGN-S3000	2	2x2	0	N/A
			WCN 61000	2	2		
	Bonded	0	WGN-51000 + WGN-F300	3	3	0	N/A
3	I-Section	1	WGN-S3000 +	4	4	0	19/74
			WGN-F300	5	5		
				2	2+2		
Bonded		0	WGN-S1000 + WGN-F300	3	3+3	0	NI/A
4	U-Section	1	WGN-S3000 +	4	4+4	0	IN/ A
			WGN-F300	5	5+5		

25

DIMENSIONAL TOLERANCES STANDARD STRUCTURAL SECTIONS

		STAND	ARD STRUCTURAL SECTIONS		
Downwortow	Televenes		Illu	ustration	
Parameter	Iolerance	СНЅ	SHS	RHS	FS
External Dimensions	\pm 0.5% with a maximum of \pm 0.5 mm				
Thickness, t	± 0.5 mm				← <i>b</i> →
Outside corner radius, r _o	± 0.5 mm		↓	↓	
Out-of-flatness (Flat Section only)	± b _f / 150		$\Delta_{f} \underbrace{\begin{array}{c} b_{f} \\ \bullet \end{array}}_{b_{f}}$	Flange Edge	
Concavity, x ₁ Convexity, x ₂	≤ 0.4%		side dimension <i>b</i> or <i>d</i>	side dimension <i>b</i> or <i>d</i>	
Squareness of sides	90°±1°				
Twist, v	≤ 2 mm + 0.5 mm per metre length				V
Straightness, <i>e</i> (in any one plane)	≤ 0.1% of total length			¥	
Mass of a section length	± 4%			e e	
Length of a member, L	± 5 mm		•	L	

The tolerance on member length applies to manufactured product only. Tolerances on post-processed (fabricated) product are determined on a project by project basis.

BONDED STRUCTURAL SECTIONS

	BONDED STRUCTURAL SECTIONS										
Parameter	Tolerance	Illustration									
Deviation from verticality of a web, $\Delta_{\!_{V}}$	± 2 mm										
Off centre of a web, e	± 2 mm	Nominal web centre line									
Out-of-flatness of a flange	± b _f / 150	$ \begin{array}{c} \downarrow & \downarrow $									
Straightness, e	0.1% of total length										
Mass of a section length	± 4%	e									
Length of a member, L	± 5 mm	← <i>L</i> →									

NOTE: The tolerance on member length applies to manufactured product only. Tolerances on post-processed (fabricated) product are determined on a project by project basis. Contact Wagners for details.

		BONDED STRUCTURAL SECTIONS
Parameter	Tolerance	Illustration
Depth, d	\pm 0.5% with a maximum of \pm 0.5mm	
Flange width, b _f	\pm 0.5% with a maximum of \pm 0.5mm	
Web width, b _w	\pm 0.5% with a maximum of \pm 0.5mm	$t_{w} \rightarrow \blacksquare \qquad d$
Flange thickness, t _r	± 3%	
Web thickness, t _w	± 10%	
Out-of-square of an individual flange, a ₀ or a ₁	± 2mm	$\frac{\frac{b_{f}}{2} \pm e}{1} \xrightarrow{f} \frac{\psi}{a_{1}}} \xrightarrow{f} \frac{b_{f}}{a_{1}}} \xrightarrow{f} \frac{\psi}{a_{1}}}{1}$
Total out-of-square of two flanges, a ₀ or a ₁	± 4mm	$d_{o} \downarrow a_{o} \downarrow b_{f} \downarrow b_{f} \pm e \qquad b_{f} \pm b \qquad b_{f$

NOTE: The tolerance on member length applies to manufactured product only. Tolerances on post-processed (fabricated) product are determined on a project by project basis. Contact Wagners for details.

DECKING

WAGNERS HAVE SUPPLIED PEDESTRIAN STRUCTURAL FRP DECKING ELEMENTS SUCH AS GRATINGS, MESH AND COVERTOP ALL ACROSS THE WORLD.

Our products are uniquely suited to withstand the harshest environments while providing a low maintenance, long life asset to the local community. Wagners mesh, gratings and covertop are perfect for coastal, marine and environmentally sensitive areas. From tidal flood plains and protected mangrove swamps to alkaline desert and corrosive mining or oil/gas facilities.

Wagners products have proven time and time again their unique durability and strength. Possessing a full in-house test and certification team, Wagners will work hand in hand with the clients to ensure a robust, aesthetically pleasing pedestrian asset that will provide decades of service.

FRP DECKING

Moulded grating is manufactured in an open, heated mould system. Continuous E-glass rovings are placed in the mould in alternating layers (on one side or two) and completely wet out with resin. This continuous process produces an integral, one piece construction which provides excellent corrosion resistance as well as bi-directional strength for meshed deckings, covertops and TredDeck.

Performance Advantages

- » Anti-fire, anti-corrosion and anti-aging
- » Anti-slippage
- » Light but high loaded strength
- » Long service life and maintenance free
- » Non-conduction or magnetic
- » Easy installation and rich colour
- » Various sizes and colours available

THERE ARE A NUMBER OF DIFFERENT MOULDS AVAILABLE RESULTING IN A EXTENSIVE RANGE OF PANEL SIZES, THICKNESSES AND MESH PATTERNS.

TredDeck is an advanced FRP composite and high-strength structural decking system that has similar geometry to covertop deckings, but with an additional specifically engineered top layer.

It consists of two main components, covertop decking substrate and a 10 mm top layer of hard-wearing stone and non-slip surface combined with thermoset UV stabilized epoxy resin as the binder and adhesive create a durable nonslip surface.

Functions

- » Anti-slip floor, stair tread, foot bridge
- » Operation platform, trench cover
- » Security and safety fence and handrails
- » Off-shore oil rig, moor shipyard, shipping deck, ceiling
- » Ramp ladder, scaffold, railway footpath
- » Decorative grid, man-made fountain pool grid
- » Non-conductive and non-magnetic

Industries

- » Chemical plant and metal finishing
- » Construction engineering
- » Traffic and transportation
- » Petrochemical engineering, ocean survey, water engineering
- » Food and beverage plants
- » Textile printing and dyeing
- » Electronics

MESH DECKING CATEGORIES

I	MICRO-MESH DECKING*															
		Thickness	Bar	Bar Spacing	Aperture	Open	Panel	Weight	Slip	Pattorn		Allo	wable De	sign Load	(kN)	
	PRODUCT CODE	(mm)	(mm)	(mm)	(mm)	(%)	(mm)	(kg/m ²)	(AS4586)	S4586) Pattern Loading		600	750	1000 ar Span (r	1200	1500
	MIC30-XX	30	5.0	13x13 40x40	8x8	38	Standard Size: 1247x3687 Maximum Size: 1527x4047	19.1	P5	≤ 5 kPa	5.50	3.65	2.85	2.15	n/a	n/a
	MIC38-XX	38	5.0	13x13 40x40	8x8	38	Standard Size: 1247x3687 Maximum Size: 1527x4047	25.0	Ρ5	≤ 5 kPa	4.85*	4.85	4.70	3.50	3.05	n/a

	MINI-MESH DECKING														
		Bar	Bar Spacing		Onen	Panel		Slin			Allo	wable De	sign Load	(kN)	
PRODUCT CODE	Thickness	Thickness	(Top/Bottom)	Aperture	Rate	Size	Weight	Rating	Pattern Loading		Max	. Joist Cle	ar Span (r	nm)	
	(mm)	(mm)	(mm)	(mm)	(%)	(mm)	(kg/m ²)	(AS4586)		400	600	750	1000	1200	1500
MIN30-XX	30	6.5	19x19 38 x38	12.5x 12.5	43	Standard Size: 1220x3660 Maximum Size: 1530x4047	18.8	Р5	≤ 5 kPa	5.50	3.65	2.85	2.15	n/a	n/a
MIN38-XX	38	6.5	19x19 38x38	12.5x 12.5	43	Standard Size: 1225x3660 Maximum Size: 1225x4047	23.5	Ρ5	≤ 5 kPa	4.85*	4.85	4.70	3.50	3.05	n/a

	OPEN-MESH DECKING															
		Bar	Bar Spacing		Open Panel Slip						Allowable Design Load (kN)					
PRODUCT CODE	Thickness	Thickness	(Top/Bottom)	Aperture	Rate	Size	Weight	Rating	Pattern Loading	Max. Joist Clear Span (mm)			nm)			
	(mm)	(mm)	(mm)	(mm)	(%)	(mm)	(kg/m ²)	(AS4586)	Louding	400	600	750	1000	1200	1500	
MSH38-XX	38	7.0	38x38	31x31	67	Standard Size: 1220x3660 Maximum Size: 2100x4240	19.5	Ρ5	≤ 5 kPa	3.55*	3.55	2.90	2.30	1.80	n/a	
MSH50-XX*	50	7.0	50x50	43x43	74	Standard Size: 1220x3660 Maximum Size: 1527x4020	23.0	Ρ5	≤ 5 kPa	3.55	3.55	2.90	2.30	1.80	n/a	

	COVERTOP DECKING														
	Thickness	Bar	Bar	Aperture	Open	Panel	Weight	Slip			Allow	able Desig	n Load (kN	1)	
PRODUCT CODE	Thekness	Thickness	Spacing	Aperture	Rate	Size	Weight	Rating	Pattern Loading		Max.	Joist Clear	Span (mm	ı)	
	(mm)	(mm)	(mm)	(mm)	(%)	mm	(kg/m ²)	(AS4586)		400	600	750	1000	1200	1500
COV25-XX	25	7.0	38x38	0	0	Standard Size: 1220x3660 Maximum Size: 1524x4010	21.0	Ρ5	≤ 5 kPa	5.05	3.60	3.25	2.15	n/a	n/a
COV30-XX	30	7.0	38x38	0	0	Standard Size: 1220x3660 Maximum Size: 1530x4010	23.0	Ρ5	≤ 5 kPa	6.15	4.40	3.35	2.65	2.90	n/a
COV43-XX	43	7.0	38x38	0	0	Standard Size: 1220x3660 Maximum Size: 2100x4240	29.0	Ρ5	≤ 5 kPa	7.45*	7.45*	7.45	6.45	5.10	n/a
COV55-XX	55	7.0	50x50	0	0	Standard Size: 1220x3660 Maximum Size: 1527x4020	33.0	Ρ5	≤ 5 kPa	20.00*	20.00×	14.50^	11.15	9.30	7.20

							TREDDECK D	DECKING*								
and the set of the			Bar	Bar		Onen	Panel		Slip			Allo	wable Des	ign Load ((kN)	
	PRODUCT CODE	Thickness	Thickness	Spacing	Aperture	Rate	Size	Weight	Rating	Pattern Loading		Ma	x. Joist Cle	ar Span (m	ım)	
and the state of the state		(mm)	(mm)	(mm)	(mm)	(%)	mm	(kg/m ²)	(AS4586)		400	600	750	1000	1200	1500
	TD35-FX	35	7.0	38x38	0	0	Standard Size: 1220x3660 Maximum Size: 1524x4010	45.0	Ρ5	≤ 5 kPa	5.05	3.60	3.25	2.15	n/a	n/a
120 33	TD40-FX	40	7.0	38x38	0	0	Standard Size: 1220x3660 Maximum Size: 1530x4010	47.0	P5	≤ 5 kPa	6.15	4.40	3.35	2.65	2.65	n/a
1000	TD53-FX	53	7.0	38x38	0	0	Standard Size: 1220x3660 Maximum Size: 2100x4240	53.0	Ρ5	≤ 5 kPa	7.45	7.45	7.45	6.45	5.10	n/a
	TD65-FX	65	7.0	50x50	0	0	Standard Size: 1220x3660 Maximum Size: 1527x4020	57.0	P5	≤ 5 kPa	20.00	20.00	14.50	11.15	9.30	7.20
* Untested, conservative value based on the c	losest decking type/sp	an • Test loa adjacer	nd was applied nt to the free ec	over 100x100r Ige of two-spa	nm plate at mi n decking	d-span and	Example:	MIN	30 -	NI						

Deck Type:

MIN = Mini-Mesh

MSH = Open Mesh

 $TD = TredDeck^{\pi}$

MIC = Micro-Mesh COV = Covertop

^ 150x150mm loading plate

× 200x200mm loading plate

^a TredDeck comes with fine grit only

⁺ Smooth finish has low slip resistance

Design values are based on L/120 deflection limit with 0.6 SLS factor, and 1.5 ULS with relevant kt factor (AS1170)

32 WAGNER.COM.AU

Resin Type:

I = Isophthalic

V = Vinyl Ester

Grit Type:

F = Fine

 $S = Smooth^{\downarrow}$

Deck Thickness

N = Normal

C = Coarse

D = Diamond Plate

STAIRTREAD

FRP StairTreads are made in similar manner to the FRP decking, hence have the same sectional properties and strength capacities.

They are supplied with painted or solid nosing depending on the applications and/ or client preference.

STAIR TREAD												
PRODUCT CODE	Mesh Type	Thickness	Weight	Standard Width	Slip Rating							
	(mm)	(mm)	(kg/m²)	(mm)	AS 4586							
ST-MIC30-XX-315X	Micro Mach	30.0	18.8	215	DE							
ST-MIC38-XX-315X	WICO-Wesh	38.0	23.8	515	PD							
ST-MIN30-XX-315X		30.0	19.1	215	DE							
ST-MIN38-XX-315X	wini-wesh	38.0	23.5	315	22							
ST-MSH38-XX-315X	On an Mark	38.0	19.5	215	DE							
ST-MSH50-XX-315X	Open-Mesn	50.0	23.0	315	P5							
ST-COV30-XX-315X		30.0	23.0									
ST-COV43-XX-315X	CoverTop	43.0	29.0	315	P5							
ST-COV55-XX-315X		55.0	33.0									

*The standard width of StairTread is 315mm, custom width is also available.

WAGNERS

PRODUCT GUIDE VERSION 05

COMPOSITE FIBRE TECHNOLOGIES (CFT)

BRIDGEDECK

BridgeDeck is an innovative product solution that is commonly used for road bridges decking applications. It complies with the engineering and safety standards within Australia and around the world including the United States, United Kingdom and the European Union.

BRIDGEDECKS												
Product	Product Code	Dimensions (mm) (WxHxT)	Weight (kg/m²)	Load Class								
BridgeDeck 40	BD-040	500x40x8	37.6	Light Vehicle								
BridgeDeck 75	BD-075	1190x75x5	39.7	Medium Vehicle								
BridgeDeck 104	BD-104	1236x105x12	53.6	T44								
BridgeDeck 125	BD-125	1240x126x10	50.0	SM1600								

Performance Advantages

- » Lightweight: The high weight/strength ratio of WCFT BridgeDeck allow its utilislation on existing timber and concrete bridge abutment, reducing the installation time and cost of the project
- » Low Maintenance: An ideal material in high risk environments near the sea or flood-prone areas, our bridgedeck will not rot, rust, corrode nor decay. Bridgedeck is not susceptible to freeze-thaw cycles, and has very low thermal expansion/contraction characteristics
- » Low Cost Installation: Prefabrication and experience allows bridgedeck to greatly reduce installation times over traditional procedures. In high traffic areas, Wagners will work closely with stakeholders to ensure a quick turnaround
- » **Robust Long-Life:** Bridgedeck is ideally suited for extended use in high fatigue structures. As a result of strenuous testing in partnership with Main Roads Queensland, our structures possess an extremely high strength reserve, allowing full load services for decades to come

PART FOUR

FIBRE ORIENTATION

Enormous design flexibility is available by utilizing different combinations of glass weight and orientation for different applications i.e. pier/wharf fender pile, a guide/ mooring piling for floating structures such as marinas, and as a structural piling, either hollow or filled with concrete.

Depending on project requirements, axial loading requirements, transverse loading requirements, deflection limits, etc, we can design custom laminate configurations to maximize performance.

CONCRETE FILL

Filling with concrete is optional to match a desired stiffness, however, most new projects do not require it. The FRP wall is structural and sufficient on its own for the majority of applications.

PILE DRIVING AND SPLICING

Wagners FRP composite piles can either be vibratory or impact driven, and they are generally driven faster than solid timber and concrete piles. FRP pile splicing is possible in deep pile driving application using prefabricated FRP splices. The prefabricated FRP splices are provided by Wagners and can be installed into the piles on-site.

PILE CAPS

Customers can order standard Conical and Flat Top Caps or Custom Top Caps to accompany their order of Piles.

Conical and Flat Pile Caps fit over the pile, while Flat Insert Pile Caps fit within the pile. Insert Caps are useful for situations where lines are thrown over the pile which might catch on and damage a non-inset cap.

CONNECTION DETAILS

Various connection configurations can be utilised depending on the proposed application, and anti-crush inserts are used to provide superior connection capacities. More specific connection details are available in Part Seven of this document.

COATING

Piles can be coated in a variety of colours using fluoropolymer coating that has been engineered to resist direct UV exposure and other weathering effects in harsh marine environments. It comes with an extra long life warranty and at least 40 years of exterior exposure before the first recoat is required on the exposed parts. High-quality polyurethane coating is another option for structures in less aggressive environments.

	NOTATION		VALUE										
PROPERTY	NOTATION	UOM	WGN-C1000	WGN-C2000*	WGN-C3000	WGN-C4000*	WGN-C5000*	WGN-B2020	WGN-B2120				
			89x6mm	154x5.8mm	230x9.7mm	293x9.5mm	301x13.5mm	200x200mm	250x250mm				
Nominal Profile Size			Circular Hollow Section	Circular Hollow Section	Circular Hollow Section	Circular Hollow Section	Circular Hollow Sections	Bonded Square Hollow Sections	Bonded Square Hollow Sections				
Outer Dimension	Do	mm	88.9	154.0	230.1	293.0	301.0	200	250				
Wall Thickness	t	mm	6.0	5.8	9.7	9.5	13.5	5.2	6.4				
Cross Sectional Area	А	mm²	1563	2700	6716	8461	12193	7621	11879				
Surface Area	SA	m²/m	0.28	0.48	0.72	0.92	0.95	0.77	0.97				
Moment of Inertia	I	mm⁴	1.35x10 ⁶	7.43x10 ⁶	40.89x10 ⁶	85.10x10 ⁶	126.26x10 ⁶	30.27x10 ⁶	73.94x10 ⁶				
Weight	w	kg/m	3.17	5.50	13.86	17.43	25.13	15.40	24.28				
Bending Moment Capacity	Mu	kN.m	17.4	41	92	256	327	65	125				
Tensile Strength (L)	F _{Lt}	MPa	361	610	635	635	635	610	610				
Tensile Modulus (L)	E _{Lt}	MPa	35720	36300	35405	35405	35405	36300	36300				
Compressive Strength (L)	F _{Lc}	MPa	267	485	395	395	395	485	485				
Compressive Modulus (L)	ELc	MPa	39200	33300	41178	41178	41178	33300	33300				
In Plane Shear Stress (L)	F _{Lv}	MPa	91	84	93	93	93	84	84				

*Theoretical value as per ASCE Pre-Standard Design for Pultruded FRP structures (2010), and/or correlated from relevant mechanical tests.

GFRP REINFORCING BARS

BACKGROUND

Glass Fibre Reinforced Polymer (GFRP) also known as glass fibre reinforced polymer is a composite material weaving fibre E-glass and vinylester resin together.

While concrete has high compressive strength, it has limited tensile strength. To » overcome these tensile limitations, reinforcing bars are used in the tension and compression side of concrete structures and steel has historically been used as an "» effective and cost-efficient reinforcement material.

Steel is susceptible to oxidation (rust), especially in coastal areas, locations where salt contaminated aggregates are used in the concrete mixture and sites where aggressive chemicals and ground conditions exist. Where corrosion of steel reinforcement occurs, the resulting materials have a larger volume (2-5 times) than the metal product from which they were originally derived, leading eventually to cracking and spalling and further deterioration of the steel.

The combination of ongoing deterioration and loss of reinforcement properties ultimately requires potentially significant and expensive outlays for repair and maintenance, and possibly the endangerment of the structure itself.

PERFORMANCE ADVANTAGES OF GFRP BARS

- Corrosion resistance will not rot or rust, impervious to the reaction of chemicals, salt ions and the alkalinity inherent in the concrete
- » Superior tensile strength composite rebar offers a tensile strength more than two times higher than steel
- Thermal expansion GFRP rebar offers a level of thermal expansion comparable to concrete
- Thermal insulation highly efficient in resisting heat transfer, such as from building exteriors to interiors
- Electrical and magnetic neutrality contains no metal, and will not interfere with the operation of sensitive electronic devices such as medical MRI units or electronic testing devices
- Lightweight weighs approximately one-quarter the weight of an equivalent size steel bar, offering significant savings in both placement and use.

GLASS 'GFRP' REBAR TECHNICAL DATA

	PROPERTIES OF GFRP REBAR													
Diameter (mm)	ASTM No.	Equivalent Cross-Section Area (mm ²)	Fibre Volume Fraction ASTM D2584	Tg (°C) ASTM E1640	Tensile Modulus (GPa) ASTM D7205	Guaranteed Tensile Strength (MPa) ASTM D7205	Ultimate Shear (MPa) ASTM D7617	Bond Strength (MPa) ACI 440.3R (Method B3)						
6	#2	28				900								
8	-	50				850								
10	#3	78				830								
13	#4	130				760								
16	#5	200	> 600/	. 100		725	150							
19	#6	280	> 60%	≥ 100	40	690] 150	ŏ						
22	#7	380				655								
25	#8	490]			620								
28	#9	615]			590								
32	#10	800				550								

PART SIX HANDRAILS

All pultruded profiles used in handrails are made of E-glass and premium grade isophthalic polyester or vinyl ester resin.

There are two types of handrail available:

Round tubes handrails consist of $50 \times 5 \text{ mm}$ for top/middle rail and post. Top and middle rails shall be connected using tee and cross connectors. Kickrails shall be 100 x 5 mm thickness and using side or base plate connectors.

Square tube handrail consists of 55×6 mm for post and rails. Top and middle shall be connected using 45×3 mm connectors. Kickrail shall be 100×5 mm thickness and using side or base plate connector.

Type 316 SS bolts/nuts/washers shall be provided for handrail assembly and fixation.

HANDRAILS				
Product Code	Part Details			
HRL-VSHS-50x6	SHS 55x6			
HRL-VCHS-50x4	CHS 50x4			
HRL-VKRL-100x4	Kick Rail 100x4			
HRL-VSHS-ELBOW	Elbow Connection for SHS			
HRL-VSHS-3WAY	3 Way Connection for SHS			
HRL-VSHS-4WAY	4 Way Connection for SHS			
HRL-VSHS-Side Plate	Side Plate Connection for SHS			
HRL-VSHS-BASE PLATE	Base Plate Connection for SHS			
HRL-VCHS-ELBOW	Elbow Connection for CHS			
HRL-VCHS-3WAY	3 Way Connection for CHS			
HRL-VCHS-4WAY	4 Way Connection for CHS			
HRL-VCHS-Side Plate	Side Plate Connection for CHS			
HRL-VCHS-BASE PLATE	Base Plate Connection for CHS			

TYPES OF POST INSTALLATION DETAILS

SQUARE HANDRAIL

ROUND HANDRAIL

ACCESSORIES

Wagners can supply a range of custom manufactured plastic accessories to complement the composite structures. Made from lightweight and durable thermoplastic alloy, all endcap accessories are corrosion resistant and designed to match the long life of the composite asset.

NORMAL E	NDCAP	FLUSH ENDCAP		RIVETED METAL ENDCAP		TEE-PIECE	
Part Numbers	Application	Part Numbers	Application	Part Numbers	Application	Part Numbers	Application
NCAP-S1000	WGN-S1000	FCAP-S1000	WGN-S1000	MCAP-S1000	WGN-S1000	TCAP-S1000	WGN-S1000
NCAP-S3000	WGN-S3000	FCAP-S3000	WGN-\$3000	MCAP-S3000	WGN-S3000	TCAP-R1000	WGN-R1000
NCAP-R1000	WGN-R1000	FCAP-R1000	WGN-R1000	MCAP-R1000	WGN-R1000	-	-

INSERTS

The inserts are manufactured using the injection molding process and are made from lightweight and durable glass fibre-filled thermoplastic alloy which is corrosion and pest resistant.

They are provided at all bolt hole locations to improve the crushing resistance as well as bolted connection capacity.

ANTI-CRUSH INSERT DESCRIPTION		
Part Numbers	Application	
INST-S3000-Ф14	WGN-S3000-M12 Bolt	
INST-S3000-Φ18	WGN-S3000-M16 Bolt	
INST-S3000-Ф22	WGN-S3000-M20 Bolt	
INST-S3000-Ф26	WGN-S3000-M24 Bolt	
INST-S1000-Φ14	WGN-S1000-M12 Bolt	
INST-S1000-Φ18	WGN-S1000-M16 Bolt	
INST-S1000-Φ22	WGN-S1000-M20 Bolt	
INST-S1000-Φ26	WGN-S1000-M24 Bolt	
INST-R1000-Φ22	WGN-R1000-M20 Bolt	
INST-R1000-Φ26	WGN-R1000-M24 Bolt	

STAINLESS STEEL BRACKETS AND FASTENERS

Wagners also supply an extensive range of stainless steel connectors and fasteners to suit the use of the composite products in many applications, maintaining a high level of corrosion resistance as well as strength. These include stainless steel brackets, bolts, nuts and washers, steel screws and steel rivets.

Refer to Wagners Installation Guide for further details about components available and refer to Wagners Design Guide for information on the connection capacities.

CONNECTIONS

PRODUCT GUIDE VERSION 05 Composite Fibre Technologies (CFT)

-WCFT PILE

HANDRAIL STRAIGHT POST 125

MEBSEY RIVER FOOTBRIDGE Kejimkujik national-park, Nova scotia, ca

GLOSSARY

Term	Description
Additives	Substances added to the polymer resin to aid in the processing of the FRP material.
Adhesive	A substance capable of holding materials together by surface attachment.
Composite	A combination of high modulus, high strength and high aspect ratio reinforcing material encapsulated by and acting in concert with a polymeric matrix.
Cure	To change the properties of a thermosetting resin irreversibly by chemical reaction, i.e. condensation, ring-closure, or addition. Cure may be accomplished by addition of curing (cross-linking) agents, with or without catalyst, and with or without heat.
Fibre Reinforced Polymer (FRP)	A Fibre Reinforced Polymer (or plastic) material consists of a polymer resin based matrix reinforced by fibres of either glass, carbon or aramid, and hybrid combinations of these fibre types.
Fibre	One or more filaments in the form of a continuous strand or roving in an FRP material.
Fibre mass fraction	The mass of reinforcement fibre in a cured composite divided by the mass of the composite section.
Fibre orientation	The orientation or alignment of the longitudinal axis of the fibre with respect to a stated reference axis.
Fibre volume fraction	The volume of reinforcement fibre in a cured composite divided by the volume of the composite section.
Filler	Non adhesive substance added in the matrix or adhesive material to alter its engineering properties, performance, and/or cost.
Glass fibre	A fibre spun from an inorganic product of fusion which has cooled to a rigid condition without crystallisation.
Glass transition temperature	Temperature at which the polymer matrix changes from a glassy to a rubbery state as temperature increases.

Term	Description
Matrix	The continuous constituent of an FRP material that surrounds the fibres. It consists of a polymer resin with fillers and additives.
Orthotropic	Having three mutually perpendicular planes of elastic symmetry.
Plastic	A material that contains one or more organic polymers of large molecular weight, is a solid in its finished state and at some stage of its manufacture or processing into finished articles, can be shaped by flow.
Polymer	An organic material composed of molecules characterised by the repetition of one or more types of monomeric units.
Pultrusion	A continuous manufacturing process used to manufacture constant cross-section shapes of any length.
Release agent	An additive which promotes release from the manufacturing mould.
Resin	The polymeric material used to bind together the reinforcing fibres in FRP.
Resin content	The amount of matrix present in a composite either by percent weight or by percent volume.
Resin system	A mixture of resin, with ingredients such as catalyst, initiator (curing agent), diluents, etc. required for the intended processing and final product.
Roving / Tow	Large number of continuous parallel filaments or a group of untwisted parallel strands.
Thermoplastic	A plastic that repeatedly can be softened by heating and hardened by cooling through a temperature range characteristic of the plastic, and when in the softened stage, can be shaped by flow into articles by moulding or extrusion.
Thermoset	A plastic that is substantially infusible and insoluble after being cured by heat or other means, e.g. polyester, epoxy, phenolic resin.
Veil	A thin layer of mat similar to a surface mat, often composed of organic fibres as well as glass fibres.
Vinyl ester resin	Thermosetting resins that consist of a polymer backbone with an acrylate or methacrylate termination.

PRODUCT GUIDE

Published by Wagners CFT Manufacturing Pty Ltd (Version 5)

ABN 91 099 936 446

© Wagners CFT Manufacturing Pty Ltd

Head Office 11 Ballera Court, Wellcamp Queensland Australia 4350

Postal Address

PO Box 151 Drayton North Toowoomba Qld 4350, Australia

Telephone +61 7 4637 7777

Fax +61 7 4637 7778

cftsales@wagner.com.au

www.wagner.com.au

WAGNERS HAS PIONEERED THE USE OF COMPOSITE MATERIALS BOTH IN AUSTRALIA AND INTERNATIONALLY, EXPORTING PRODUCTS ALL AROUND THE WORLD.

VISIT WAGNERS CFT WEBSITE BY SCANNING THE QR CODE

